Design of Improved Solar Energy Harvested Hybrid Active Power Filter for Harmonic Reduction, Power factor Correction and Current Compensation

P. Karthika
Assistant Professor
Department of Electrical and Electronics Engineering
Sri Sairam Institute of Technology

N. Shanthi
Assistant Professor
Department of Electrical and Electronics Engineering
Sri Sairam Institute of Technology

E. Maheswari
Assistant Professor
Department of Electrical and Electronics Engineering
Sri Sairam Institute of Technology

Abstract

This paper introduces the Hybrid Active Power Filter (HAPF) for power-factor correction, harmonic reduction and current compensation. The existing control scheme was implemented without load harmonic detection. In a hybrid active power filter (HAPF), the active part is used to filter out the higher order harmonics, while lower order harmonics are eliminated by passive filter tuned for 5th and 7th order harmonic frequencies. The compensation constraints are obtained by regulating the currents indirectly from the power mains. The reference currents of SAPF are generated by the dc-link voltage controller based on the active power balance of system. A high step-up converter, which is suitable for renewable energy system, is proposed in this paper to produce a dc-link voltage. Through a voltage multiplier module composed of switched capacitors and coupled inductors, a conventional interleaved boost converter obtains high step-up gain without operating at extreme duty ratio. Experimental results are shown for determining the effectiveness of the solar energy harvested HAPF-proposed control system.

Keywords: Hybrid active power filter, High step up converter, Harmonic compensation, Matlab/Simulink, Power factor correction

I. INTRODUCTION

The development of power electronic equipment, the intensive use of static converters, and the great number of domestic electronic-based applications have deteriorated the quality of the power mains system. These nonlinear loads generate current harmonics that can be asymmetric and can cause voltage drops on the supply network impedance resulting in unbalanced conditions. These effects can be worse in the case where the loads change randomly. Conventional solutions like passive filters alone for reducing the current harmonic pollution are ineffective. Moreover, standard regulations and recommendations regarding the power flow of electrical energy, such as IEC 61000-3-2 [1] and IEEE519 [2], have become restricted and this has stimulated the use of active power compensation. Active power compensation is normally achieved with the help of switching power converters connected to the network as an active filter. Combined use of active filter and passive filter helps to remove the higher and lower order harmonics. By providing high dc-link voltage from a Renewable energy source like solar by using a high step up converter it is possible to provide high compensation.

A suitable solution for compensating the power quality problems consists the use of current controller whose gains are adjusted by adaptation. The compensation requirements are obtained by regulating indirectly the currents of the power mains. In this case, the expected controlled grid currents must be sinusoidal, which addresses to control schemes like resonance-based techniques. In the proposed study, the amplitude of SAPF reference currents is generated by the dc-link voltage controller, based on the active power balance of system.

II. SYSTEM DESCRIPTION AND MODELLING

This system consists of active filter and passive filter for compensation. Zero crossing devices are used to decide start compensation or end compensation and start sampling or end sampling signals to microcontroller. The isolated gate driver is used to drive MOSFET.
The main advantage of the hybrid active power filter is that it requires a small rated converter compared to the similar pure active filter.

The active power filter can be divided into a power circuit and signal circuit. The power circuit produces the required current or voltage to be injected to the system. The main constituent of a power circuit is a Voltage Source Inverter (VSI) with a dc storage capacitor at dc bus. The VSI is made of power electronic switches such as IGBT, MOSFET’s etc. The required switching pulses for the VSI are provided by the signal circuit. The VSI is connected to the system through a coupling inductor or matching transformer or both.

The major parts of any active power filter set up are its control algorithm. The control algorithm calculates the instantaneous value of reference signal using the locally available current and voltage measurements. The algorithm used in active power filter should have a good steady state and transient response. The present work is focused to the control algorithms for single phase and three-phase shunt active power filter. In case of single phase active power filter, the control algorithm is required to generate a sinusoidal reference source current under both sinusoidal and distorted supply voltages. It should also ensure a good steady state and transient response. The three-phase active power filter algorithms make the source current balanced and sinusoidal.

The representation of an ideal active power filter or STATCOM consists of a voltage source which is supplying a non-linear load. The active power filter is represented by an ideal current source connected at the Point of Common Coupling (PCC), which injects the non-linear component of load current into the system. An ideal active power filter has infinite band width and it has no losses. This means, it can generate current of any shape with no losses in the system. Here the current source is replaced by a Voltage Source Inverter (VSI) supported by a dc link voltage produced by the high step up converter.

The operation of VSI is controlled by dsPIC microcontroller using input data such as PCC voltage, load current, filter current and dc capacitor voltage. The dsPIC computes the reference current of the active power filter using different control algorithms.

The proposed converter is a conventional interleaved boost converter integrated with a voltage multiplier module, and the voltage multiplier module is composed of switched capacitors and coupled inductors. The coupled inductors can be designed to extend step-up gain, and the switched capacitors offer extra voltage conversion ratio.

The advantages of the proposed converter are as follows.
1) The proposed converter is characterized by low input current ripple and low conduction losses, which increases the
Design of Improved Solar Energy Harvested Hybrid Active Power Filter for Harmonic Reduction, Power factor Correction and Current Compensation

II. LIFETIME OF THE CONVERTER

1) The converter achieves the high step-up gain that renewable energy systems require.
2) Due to the lossless passive clamp performance, leakage energy is recycled to the output terminal. Hence, large voltage spikes across the main switches are alleviated, and the efficiency is improved.
3) Low cost and high efficiency are achieved by employment of the low-voltage-rated power switch with low RDS(ON); also, the voltage stresses on main switches and diodes are substantially lower than output voltage.
4) The inherent configuration of the proposed converter makes some diodes decrease conduction losses and alleviate diode reverse recovery losses.

III. OPERATING PRINCIPLE OF HIGH STEP UP CONVERTER

The proposed high step-up interleaved converter with a voltage multiplier module is shown in Fig. 2. The voltage multiplier module is composed of two coupled inductors and two switched capacitors and is inserted between a conventional interleaved boost converter to form a modified boost–flyback–forward interleaved structure. When the switches turn off by turn, the phase whose switch is in OFF state performs as a flyback converter, and the other phase whose switch is in ON state performs as a forward converter.

Primary windings of the coupled inductors with Np turns are employed to decrease input current ripple, and secondary windings of the coupled inductors with Ns turns are connected in series to extend voltage gain. The turn ratios of the coupled inductors are the same. The coupling references of the inductors are denoted by “·” and “∗”.

The equivalent circuit of the proposed converter is shown in Fig. 3, where \(L_{m1} \) and \(L_{m2} \) are the magnetizing inductors; \(L_{k1} \) and \(L_{k2} \) represent the leakage inductors; \(L_s \) series leakage inductors in the secondary side; \(S_1 \) and \(S_2 \) denote the power switches. \(C_{c1} \) and \(C_{c2} \) are the switched capacitors; and \(C_1, C_2, \) and \(C_3 \) are the output capacitors \(D_{c1} \) and \(D_{c2} \) are the clamp diodes.

\[n = \frac{N_s}{N_p} \]

Fig. 3: Proposed high step up converter

Fig. 4: Equivalent circuit of proposed model

\(D_{b1} \) and \(D_{b2} \) represent the output diodes for boost operation with switched capacitors, \(D_{f1} \) and \(D_{f2} \) represent the output diodes for flyback–forward operation, and \(n \) is defined as turn ratio \(N_s/N_p \).
In the circuit analysis, the proposed converter operates in continuous conduction mode (CCM), and the duty cycles of the power switches during steady operation are greater than 0.5 and are interleaved with a 180° phase shift. The key steady waveform in one switching period of the proposed converter contains six modes.

A. **Mode I** [t₀, t₁]:

At t = t₀, the power switch S₂ remains in ON state, and the other power switch S₁ begins to turn on. The diodes Dc₁, Dc₂, Db₁, Db₂, and Dₙ are reversed biased. The series leakage inductors Lₙ quickly release the stored energy to the output terminal via flyback–forward diode Df₂, and the current through series leakage inductors Lₙ decreases to zero. Thus, the magnetizing inductor Lₘ1 still transfers energy to the secondary side of coupled inductors. The current through leakage inductor Lₖ₁ increases linearly, and the other current through leakage inductor Lₖ₂ decreases linearly.

B. **Mode II** [t₁, t₂]:

At t = t₁. Both of the power switches S₁ and S₂ remain in ON state, and all diodes are reversed biased. Both currents through leakage inductors Lₖ₁ and Lₖ₂ are increased linearly due to charging by input voltage source Vₙ.

C. **Mode III** [t₂, t₃]:

At t = t₂, the power switch S₁ remains in ON state, and the other power switch S₂ begins to turn off. The diodes Dc₁, Dₙ₁, and Dₙ₂ are reversed biased. The energy stored in magnetizing inductor Lₘ2 transfers to the secondary side of coupled inductors, and the current through series leakage inductors Lₙ flows to output capacitor C₃ via flyback–forward diode Df₁. The voltage stress on power switch S₂ is clamped by clamp capacitor C₉ which equals the output voltage of the boost converter. The input voltage source, magnetizing inductor Lₘ2, leakage inductor Lₖ₂, and clamp capacitor C₉ release energy to the output terminal; thus, V_C₁ obtains a double output voltage of the boost converter.

D. **Mode IV** [t₃, t₄]:

At t = t₃, the current iDc₂ has naturally decreased to zero due to the magnetizing current distribution, and hence, diode reverse recovery losses are alleviated and conduction losses are decreased. Both power switches and all diodes remain in previous states except the clamp diode Dc₂.

E. **Mode V** [t₄, t₅]:

At t = t₄, the power switch S₁ remains in ON state, and the other power switch S₂ begins to turn on. The diodes Dc₁, Dc₂, Db₁, Db₂, and Dₙ₂ are reversed biased. The series leakage inductors Lₙ quickly release the stored energy to the output terminal via flyback–forward diode Df₁, and the current through series leakage inductors decreases to zero. Thus, the magnetizing inductor Lₘ₂ still transfers energy to the secondary side of coupled inductors. The current through leakage inductor Lₖ₂ increases linearly, and the other current through leakage inductor Lₖ₁ decreases linearly.

![Switching pattern](image)
F. Mode VI \([t_5, t_6]\):

At \(t = t_5\), both of the power switches \(S_1\) and \(S_2\) remain in ON state, and all diodes are reversed biased. Both currents through leakage inductors \(L_{k1}\) and \(L_{k2}\) are increased linearly due to charging by input voltage source \(V_{in}\).

G. Mode VII \([t_6, t_7]\):

At \(t = t_6\), the power switch \(S_2\) remains in ON state, and the other power switch \(S_1\) begins to turn off. The diodes \(D_{c2}\), \(D_{b2}\), and \(D_{f1}\) are reversed biased. The energy stored in magnetizing inductor \(L_{m1}\) transfers to the secondary side of coupled inductors, and the current through series leakage inductors flows to output capacitor \(C_2\) via fly back–forward diode \(D_{f2}\). The voltage stress on power switch \(S_1\) is clamped by clamp capacitor \(C_{c2}\) which equals the output voltage of the boost converter. The input voltage source, magnetizing inductor \(L_{m1}\), leakage inductor \(L_{k1}\), and clamp capacitor \(C_{c1}\) release energy to the output terminal; thus, \(V_{C1}\) obtains double output voltage of the boost converter.

H. Mode VIII \([t_7, t_8]\):

At \(t = t_7\), the current \(i_{Dc1}\) has naturally decreased to zero due to the magnetizing current distribution, and hence, diode reverse recovery losses are alleviated and conduction losses are decreased. Both power switches and all diodes remain in previous states except the clamp diode \(D_{c1}\).

IV. Calculation of Compensation current

Role of Reactive Power on voltage and its regulation

\[
E^2 = (V + \Delta V)^2 + \delta V^2 = (V + R\cos\phi + X\sin\phi)^2 + (R\cos\phi - R^2\sin\phi)^2
\]

Hence,

\[
\begin{align*}
\Delta V &= (RP+QX)/V \\
\delta V &= (XP-RQ)/V \\
\delta V &= (V + \Delta V) \\
E^2 &= [V + (RP+QX)/V]^2 \\
E-V &= (RP+QX)/V=\Delta V \\
E-V &= [XQ]/V
\end{align*}
\]

So the reactive power can be compensated either by improving the receiving voltage or by reducing the line reactance. Since the line reactance is fixed, it can be done only by increasing the voltage. Hence on injecting the current into the distribution we can improve the voltage and compensate the reactive power.

The voltage equation before nonlinear load is, \(V(t) = v_{m1}\sin(\omega t)\)

The voltage and current equation after adding dc load is,

\[
V(t) = v_{dc} + v_{m1}\sin(\omega t + \phi_{v1}) + v_{m2}\sin(2\omega t + \phi_{v2}) + v_{m3}\sin(3\omega t + \phi_{v3}) + \ldots + v_{mn}\sin(n\omega t + \phi_{vn})
\]

![Fig. 6: Phasor diagram](image)

\[
i(t) = i_{dc} + i_{m1}\sin(\omega t + \phi_{i1}) + i_{m2}\sin(2\omega t + \phi_{i2}) + i_{m3}\sin(3\omega t + \phi_{i3}) + \ldots + i_{mn}\sin(n\omega t + \phi_{in})
\]

The source power can be calculated as,

\[
P_s = [v_{m1}\cos\phi_{v1}] / 2
\]

With that the average power can be calculated as the product of \(v(t)\) and \(i(t)\),

\[
P_{avg} = \frac{v_{dc}i_{dc} + [v_{m1}\cos\phi_{v1}] / 2 + v_{m2}\cos\phi_{v2}] / 2 + [v_{m3}\cos\phi_{v3}] / 2 + \ldots + [v_{mn}\cos\phi_{vn}] / 2}{2}
\]
P_{loss} = k_p x e_v + k_i \int e_v \, dt ; \quad \text{where, error voltage, } e_v = v_{ref} - v_{act}

The maximum value of source current can be calculated as,

\[i_{ms} = 2[P_{avg} + P_{loss}] / (v_m \cos \phi_s) \]

The above equation can be reduced as,

\[i_s(t) = i_{ms} \sin(\omega t - \phi_s) \]

With the load current and the fundamental current, the injecting current can be found out as,

\[i_c^*(t) = i_l(t) - i_s(t) \]

\[i_c^*(t) = i_l(t) - i_s(t) \]

V. SIMULATION CIRCUIT

VI. SIMULATION RESULTS

The simulation results of the proposed system are shown here using a nonlinear load.
Design of Improved Solar Energy Harvested Hybrid Active Power Filter for Harmonic Reduction, Power factor Correction and Current Compensation

Fig. 7: Simulated voltage and current of uncompensated load

Fig. 8: FFT Analysis for Nonlinear load

Fig. 9: Power factor before compensation

Fig. 10: Simulated voltage and current of compensated load
According to the simulation results the harmonic content has reduced to 13.66% in comparison to 99.05% without compensation.

VII. HARDWARE

This is the experimental setup of Hybrid Active Power filter to filter out the harmonics and to compensate the source current.

VIII. SCOPE FOR FUTURE WORK

The Hybrid active power filter is a major scope of application for the future power system, i.e., for sustainable growth in power system, it is needed to utilize the renewable energy resources like wind, biomass, hydel power, co-generation, etc. The integration of wind energy into existing power system generates power quality issues such as voltage transients, instability, etc. Adaptive shunt hybrid filters are suggested for improving power quality issues, when generation rapidly changes with wind speed. This can also be implemented with other control schemes such as high efficient fuzzy logic technique to improve the efficiency. Solar power in addition to supply dc link voltage can be used for local lighting purposes.
IX. CONCLUSION

The details of Renewable energy harvested Hybrid Active Power Filter are presented. Based on the design details illustrated, a prototype is developed in the laboratory. The experimental results demonstrate the compensator effectively compensates harmonic components of the load current and consequently utility currents are balanced and sinusoidal with unity phase relationship with their voltages in respective phases. Also, the method can work irrespective of supply voltage quality, whether it is sinusoidal or distorted. It is observed that the experimental results are consistent with the simulation results.

REFERENCES