An Efficient D-Flip Flop using Current Mode Signaling Scheme

Sheona Varghese  
PG Scholar  
Department of Electronics & Communication Engineering  
Saintgits College of Engineering

Anu Raj  
Assistant Professor  
Department of Electronics & Communication Engineering  
Saintgits College of Engineering

Jyothish Chandran G  
Assistant Professor  
Department of Electronics & Communication Engineering  
Saintgits College of Engineering

Abstract

In this paper a power efficient D-flip flop was conducted by adopting a current mode signalling scheme (CMS), named current mode clocked D-flip flop. For providing full swing output proposed D-flip flop is constructed by transmission gate with Clock gating. This setup reduces the dynamic power dissipation and also reduces the circuit complexity. In this project, the effect of current mode scheme on power as well as performance of flip flop such as MS D-FF, DDFF, CPEFF and CMPFFE are analysed. The performance analysis was carried out by adopting 180nm CMOS technology. Experimental results reveal that current mode clocked D-flip flop outperforms the conventional flip flop in terms of power, delay and power delay product.

Keywords: Conditional Pulse Enhancement Scheme, Dual Dynamic Node, Current Mode Pulsed, Current Mode Clocked, Clock Gating, Transmission Gate

I. INTRODUCTION

In VLSI design, researchers are interested greatly in the design of the system with high speed, less area and that are power efficient. Nowadays portable devices are increases, the need is large battery life. This can be obtained by low power components. Technology scaling shows that delay of local interconnects reduces, but the global interconnect delay increases. Flip flops are one of the major modules in all digital storage element. Nowadays many schemes are adopted to increase the efficiency of the flip flops. The main power consumers in flip flops are clock network and interconnect. By using high-speed signalling schemes the dynamic power consumption of this clock network can be reduced.

Mainly there are two types of high-speed signalling schemes available, named as voltage mode and current mode signalling. Voltage mode (VM) and current mode (CM) are the two regulating conditions that control the output of the supply. Most of the application uses a voltage source as supply, VM supply constant output voltage whereas the current drawn from 0 to full rated current of the supply. Generally, voltage sources are modelled as providing low output impedance. The Current mode works in a similar manner but its limits and regulates the output current to the desired level, so it provides constant current to each load. The current mode is modelled as very high output impedance [3]

Current mode logic was a pleasing high-speed signalling scheme, however, they consume more static power. In case of increasing interconnect delay and power consumption, current mode logic gives better results than VM because in CM it transmit current with minimal voltage swing to each load and at output gives full swing.

In this paper present an efficient flip flop using current mode signalling scheme with clock gating technique, where the clock distributed to the interconnect as Current. The rest of the paper is organized as follows: Section II describes some of the existing flip flop design. Section III proposes an efficient D-flip flop and clock distribution network. Section IV compares new CM flip flop with some existing flip flop design and also compares its application, followed by conclusion in Section V.

II. ANALYSIS OF FLIP FLOP ARCHITECTURES

There are two types of latches and flip flops available in past decades. Conventional master slave designs are called as static flip flop. They dissipate comparatively low power and have low clock to output delay. But because of large set time they have large data to output delay. Introducing low power design in these flip flop are critical. Because interconnect in scaled technologies consumes large power. Main factor for this is the interconnect power. Current mode is one of the high speed signalling speed.
A. Conventional Master Slave Flip Flop

Master slave flip flop are implemented by placing two static latches back to back. First latch output follows the input when clock is LOW and second latch output follows the input when clock is HIGH and called as positive edge triggered flip flop. In order to reduce the delay either first or the last inverter can be removed. The flip flop usually generate single clock signal and locally generate its compliment. Making both the latches transparent increasing the flip flop hold time. Fig 1 shows the master slave flip flop.

![Fig. 1: Master Slave Flip Flop](image1)

B. Conditional Pulse Enhancement Flip Flop

Fig 2 shows the conditional pulse enhancement flip- flop (CPEFF). This structure reduced the number of nMOS transistor stacked in the discharging path and enhance the pull down strength when the input data is ‘1’. Transistor N2 and N3 combined to form a two input AND gate logic, which control the discharge of N1 transistor. Complementary inputs are given to the AND gate, and most of the time output kept to zero. During the falling edge of the clock, floating at node Z is harmless.

![Fig. 2: Conditional Pulse Enhancement Flip Flop](image2)

Transistor N2 and N3 are turned ON during the rising edge of the clock and pass weak 1 to node Z which turns ON transistor N1 [13]. This design reduces the number of stacked transistor. To enhance the discharging path transistor P3 is added. Most of the time node X is pulled high so transistor P3 is normally off. The voltage level of node X rises and turns off transistor P3. With transistor P3 the width of the generated discharging pulse is stretched out. This flip flop takes effects only when the flip flop output Q is subject to data change from 0 to 1.
C. Dual Dynamic Node Flip Flop

Fig 3 shows the Dual Dynamic Node Flip Flop (DDFF) flip-flop structure. In this architecture node, X1 is pseudo-dynamic and node X2 is purely dynamic. The weak inverter acts as a keeper. Instead of conditional shutoff mechanism in Cross Charge Control Flip-Flop (XCFF) here unconditional shutoff mechanism is provided at the front end. This flip flop operated in two phases the first phase when the clock is “HIGH” called evaluation phase, the second is when the clock is “LOW” called precharge phase. During the evaluation phase, 1-1 overlap of CLK and CLKB occurs. If D is high prior to this overlap period, node X1 is discharged through transistor NM0 to NM2. This cause node X1B to go high and output QB to discharge through NM4. The low level at the node X1 is retained by the inverter pair INV1 to INV2 for the rest of the evaluation phase where no latching occurs. Thus, node X2 is held HIGH throughout the evaluation period by the pMOS transistor PM1. As the CLK falls LOW, the circuit enters the precharge phase and node X1 is pulled high through PM0. During this time node X2 is not actively driven by any transistor, it stores the charge dynamically. The output at node QB and maintain their voltage levels through INV3-4.

![Fig. 3: Dual Dynamic Node Flip Flop](image1)

D. Current Mode Pulsed Flip Flop with Enable

Fig 4 shows the current mode pulsed flip-flop with enabling architecture. This circuit uses an input current comparator stage, a register stage, and a static storage cell. The current comparator stage compares the input push-pull current with the reference current and amplifies the clock to a full swing voltage pulse that triggers the data to latch at the register stage [9]. This CMPFF is only sensitive to the unidirectional push-pull current which gives the positive edge trigger operation of the flip-flop. This structure provides an active low enable signal.

When the enable input is LOW the transistor M4 is connected to Vdd. Normally current mode logic circuits consume large static power even when the circuits are in sleep mode. By providing enable signal this static power is reduced [9]. The register stage is similar to a single phase register but it requires less transistor and has reduced clock load. The current generated voltage pulse triggers the storing data in the output storage cell.

![Fig. 4: Current Mode Pulsed Flip Flop](image2)
III. PROPOSED ARCHITECTURE

In past decades several modified flip flops have been proposed, all aiming at the reduction of power delay and area. The major power consuming module in flip-flop is clock distribution network. In this paper proposed a D-flip flop using current mode signalling scheme. Current mode signalling is one of the high-speed signaling scheme. Also provide a clock gating to proposed flip-flop, reduce the unwanted switching activities. Therefore the delay and overall power performance of the proposed flip-flop reduced.

![Proposed Current mode D-flip flop](image)

Fig. 5: Proposed Current mode D-flip flop

Fig 5 shows the proposed Current mode clocked flip-flop. The circuit is implemented by a transmission gate, buffers, and a AND gate. Clock supplied to the circuit as current rather than voltage. Clock gating is provided by an AND gate logic, so only when the enable input is 1 the clock signal comes from to the circuit. This will reduce the unwanted switching activates in the circuit. Using transmission gate got full swing output, so dynamic power will be reduced. First latch stage is ON only when the clock is HIGH, during this period the second latch is inactive. When the clock is LOW the second latch is ON and holds its previous value. Only strong values are transmitted by two latch structures, hence gets a full swing at the output.

A. Current Mode Transmitter

To integrate the current mode D flip-flop using transmission gate, we required a trusted transmitter that can provide a push-pull current to the clock network and distribute the required amount of current to each current mode D flip-flop. The transmitter used is similar to the transmitter used in reference [9]. Clock distribution network consists of a transmitter, RC interconnect model and proposed current mode D flip-flop shown in Fig 6.

Input given to the transmitter is a conventional voltage mode clock and at the output provide a push-pull current, this push-pull current is distributed to the interconnect line so required amount of current is given to each CMDFF. Clock distribution network is modelled as symmetric H-tree [10] so that equal current is distributed to each CMDFF. In fig 6, positive edge clock and its delayed inverted clock are the input of NAND gate, produces a small negative pulse will turn on the transistor M1, hence PMOS transistor source the line to Vdd. Similarly, NOR gate uses the negative edge of the clock and its delayed inverted clock will produce a small pulse will turn on the transistor M2 while M1 is off, hence the NMOS transistor sinks the line to ground.

Both the transistor gives two non-overlapping signals which will remove any short circuit current from a transmitter. Interconnect are modelled with RC instead of RLC, because the total clock network resistance is much higher than the total inductive reactance [11]. Compared with the traditional voltage mode (VM) clock network, current mode (CM) clock distribution network with RC gives 65% power reduction.
IV. EXPERIMENTAL RESULTS

In order to evaluate the proposed design, the performance of the proposed D-flip flop design is evaluated against the existing design. To create the schematic of the circuit Pyxis schematic of Mentor Graphics is used. The performance of the proposed design is compared with the existing design through pre-layout simulations using Eldo simulator and output waveforms are viewed using E-Z wave viewer. All the circuits have been simulated in TSMC 180nm CMOS technology with VDD of 1.8V.

Table 1 illustrates the delay and power delay product of various flip flop with the proposed flip flop design. The results shows that the proposed design have lowest power dissipation among the group and also the CLK to Q delay is much less compared to other flip flops.

<table>
<thead>
<tr>
<th>Flip Flop</th>
<th>Total Power (µW)</th>
<th>CLK – Q Delay (pS)</th>
<th>PDP (pJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS DFF</td>
<td>201.72</td>
<td>447.46</td>
<td>0.0926</td>
</tr>
<tr>
<td>CPEFF</td>
<td>231.385</td>
<td>247.70</td>
<td>0.0573</td>
</tr>
<tr>
<td>DDFF</td>
<td>281.21</td>
<td>742.25</td>
<td>0.0208</td>
</tr>
<tr>
<td>CMPFFE</td>
<td>1.265M</td>
<td>5.460n</td>
<td>6.9069m</td>
</tr>
<tr>
<td>Proposed CMDFF</td>
<td>6.959</td>
<td>447.29</td>
<td>0.0031</td>
</tr>
</tbody>
</table>

Flip flops had several number of application like it can be used in shift registers, counters, register files etc. Table 2 shows the comparison of Johnson counter using proposed D-flip-flop with traditional flip flop. Results shows that the power dissipation and CLK to Q delay of proposed counter with proposed flip flop have less power compared to that of counter using conventional flip flop. And the proposed flip flop design gives 25.62% decrease in total power delay product.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Power Dissipated (µW)</th>
<th>CLK to Q Delay (pS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bit Johnson counter using conventional flip flop</td>
<td>179.641</td>
<td>235</td>
</tr>
<tr>
<td>4-Bit Johnson counter using proposed D-Flip flop</td>
<td>152.407</td>
<td>206</td>
</tr>
</tbody>
</table>

V. CONCLUSION

The clocking system of flip flops consuming nearly half of the total power, therefore reducing the power of clock distribution network can reduce the total power consumption of the system. A current mode clocked D-flip flop logic and a clock distribution network has been designed and simulated in this project. The proposed flip -flop have been compared with voltage mode D-flip flop and also compared with MS D-FF,CPEFF,DDFF and CMPFFE structures and it can be concluded that the D-flip- flop using clock gating and current mode logic has got better power performance. The circuit can be implemented using transmission gate which gives a full swing output and also reduces the circuit complexity. The clock gating circuit is added to ensure that that unwanted switching activities are suppressed. In order to integrate the flip -flop with current mode logic, a transmitter provides a push- pull current to the network and distribute required amount of current to each flip -flop. The proposed flip flop design is shown better PDP compared to all other designs. The proposed CMDFF gives 96% power reduction and faster than traditional VM clock flip -flop. Also gives similar silicon area.
REFERENCES